Undecidability in Matrices over Laurent Polynomials
نویسندگان
چکیده
We show that it is undecidable for finite sets S of upper triangular 4 × 4matrices over Z[x, x−1] whether or not all elements in the semigroup generated by S have a nonzero constant term in some of the Laurent polynomials of the first row. This result follows from a representations of the integer weighted finite automata by matrices over Laurent polynomials.
منابع مشابه
Application of the exact operational matrices for solving the Emden-Fowler equations, arising in Astrophysics
The objective of this paper is applying the well-known exact operational matrices (EOMs) idea for solving the Emden-Fowler equations, illustrating the superiority of EOMs over ordinary operational matrices (OOMs). Up to now, a few studies have been conducted on EOMs ; but the solved differential equations did not have high-degree nonlinearity and the reported results could not strongly show the...
متن کاملFive-diagonal Matrices and Zeros of Orthogonal Polynomials on the Unit Circle
It is shown that monic orthogonal polynomials on the unit circle are the characteristic polynomials of certain five-diagonal matrices depending on the Schur parameters. This result is achieved through the study of orthogonal Laurent polynomials on the unit circle. More precisely, it is a consequence of the five term recurrence relation obtained for these orthogonal Laurent polynomials, and the ...
متن کاملSums of Squares, Moment Matrices and Optimization over Polynomials
We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equations and inequalities, which is NP-hard in general. Hierarchies of semidefinite relaxations have been proposed in the literature, involving positive semidefinite moment matrices and the dual theory of sums of squares of polynomials. We present these hierarchies of approximations and their main...
متن کاملMultivariate Orthogonal Laurent Polynomials and Integrable Systems
An ordering for Laurent polynomials in the algebraic torus (C∗)D, inspired by the Cantero–Moral– Velázquez approach to orthogonal Laurent polynomials in the unit circle, leads to the construction of a moment matrix for a given Borel measure in the unit torus T. The Gauss–Borel factorization of this moment matrix allows for the construction of multivariate biorthogonal Laurent polynomials in the...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کامل